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Using first-principles simulations, we study electronic structures, 
charged and neutral excitations of large heterogeneous systems

§ Nanoparticles for energy conversion
§ Solid/liquid interfaces for photocatalysis
§ Spin defects in semiconductors for quantum information science

We have developed WEST, a massively parallel implementation of 
many-body perturbation theory (GW/BSE) without empty states

ü No explicit summation over virtual orbitals
ü No explicit storage or inversion of large dielectric matrices
ü Full frequency integration with contour deformation

WEST has been successfully applied to large G0W0 calculations 
consisting of ~2,000 electrons on CPUs
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Motivation and introduction

Govoni and Galli, J. Chem. Theory Comput.11, 2680-2696 (2015)

http://west-code.org

http://west-code.org/


§ Full-frequency G0W0 self-energy
§ Electron-phonon self-energy

Quasiparticle energies

§ Density matrix perturbation theory
(BSE & TDDFT)

§ Quantum defect embedding theory

Excitation processes

Many-body perturbation theory

Interface

§ Python
(WESTpy)

§ JSON
§ XML
§ HDF5

Other electronic structure codes

Frameworks

MPI + OpenMP parallelization (scales to 500k CPU cores)
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The WEST code:  Without Empty STates

Govoni and Galli, J. Chem. Theory Comput.11, 2680-2696 (2015)



GPU acceleration in WEST

Porting strategies

§ GPU libraries for performance:
cuFFT, cuBLAS, cuSOLVER, ...

§ Directives for portability:
CUDA Fortran à OpenACC à OpenMP

Achievements

§ Significant speedup over CPU code
§ Excellent strong and weak scalability 

demonstrated on various supercomputers
§ Tractable size of full-frequency G0W0

pushed to 10k electrons
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https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit

https://www.nersc.gov/systems/perlmutter

✅

✅

OLCF/Summit
200.79 PFLOP/s
NVIDIA V100 GPUs

NERSC/Perlmutter
93.75 PFLOP/s
NVIDIA A100 GPUs

WEST has been ported to NVIDIA GPUs

Yu and Govoni, J. Chem. Theory Comput.18, 4690-4707 (2022)

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit
https://www.nersc.gov/systems/perlmutter
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low efficiency!



Hierarchical parallelization scheme
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density
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NPDEP perturbations distributed across “images”

NPW coefficients distributed across MPI tasks within a band group

Nspin spin channels distributed across “pools” within an image
Nb bands distributed across “band groups” within a pool

Each MPI task offloads to a GPU

The calculation of the response can 
be done independently for each 
perturbation, band, and spin channel
à many layers of parallelism
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§ All levels of parallelism in the PDEP algorithm are fully harnessed
§ CPU-GPU and GPU-GPU communication cost is reduced



GPU porting and optimization strategies
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Full-frequency G0W0 calculation of COOH-Si/H2O interface
1560 electrons, cutoff 60 Ry, PBE, ONCV PP
Ground state DFT with Quantum ESPRESSO

GPU porting and optimization strategies

1.5x

1x

v1:  Initial GPU porting (baseline)

v2:  Multi-level parallelization and data distribution

§ Reduced CPU-GPU and MPI communication
§ Improved load balance across GPUs



CPU and GPU operations can be done asynchronously
§ MPI communications
§ CPU-GPU communications
§ GPU computations

Example:
Distributed matrix multiplication A x B = C

GPU v1
1 do i = 1, n_mpi
2 copy a_h to a_d
3 compute c_d(i) = a_d * b_d
4 circular shift a_h
5 end do

GPU v2 (async)
1 do i = 1, n_mpi
2 async circular shift a_h
3 copy a_h to a_d
4 compute c_d(i) = a_d * b_d
5 end do

GPU v3 (async + SP)
1 convert a_h to a_h_sp
2 do i = 1, n_mpi
3 async circular shift a_h_sp
4 copy a_h_sp to a_d_sp
5 convert a_d_sp to a_d
6 compute c_d(i) = a_d * b_d
7 end do

tim
e

tim
e

tim
e

saving

saving

A B C

(each color represents an MPI process)

Overlapping communication and computation
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GPU porting and optimization strategies

2.2x

v1:  Initial GPU porting (baseline)

v2:  Multi-level parallelization and data distribution

§ Reduced CPU-GPU and MPI communication
§ Improved load balance across GPUs

v3:  Single-precision for selected operations

§ Fast Fourier transforms (FFTs)
§ Data communication (MPI)
§ Quasiparticle energies match double-precision

v4:  Additional optimizations

§ Overlap between communication and computation
§ GPU memory access
§ MPI I/O

GPU porting and optimization strategies

1.9x

Full-frequency G0W0 calculation of COOH-Si/H2O interface
1560 electrons, cutoff 60 Ry, PBE, ONCV PP
Ground state DFT with Quantum ESPRESSO

1.5x

1x
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Performance benchmark

1 NERSC/Perlmutter node = 4 NVIDIA A100 GPUs
1 NERSC/CoriGPU node = 8 NVIDIA V100 GPUs

1 NERSC/CoriHaswell node = 32 Intel Haswell CPU cores
1 OLCF/Summit node = 6 NVIDIA V100 GPUs

1 NERSC/Edison node = 24 Intel Ivy Bridge CPU cores

§ Nearly ideal strong scaling 
demonstrated on various machines

§ Time to solution on GPU nodes is 
less than 1/30 of that on CPU nodes

§ 2x faster on A100 than on V100 
(more memory, higher memory 
bandwidth, FP64 tensor cores)

Full-frequency G0W0 calculation of CdSe nanoparticle
884 electrons, cutoff 50Ry, PBE, ONCV PP

Ground state DFT with Quantum ESPRESSO
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Strong scaling to full Summit

§ WEST-GPU scales to the entire 
Summit supercomputer

§ Better scalability observed for bigger 
system (1,728-atom silicon supercell) 
due to a higher computation-to-
communication ratio

§ 80 quasiparticle energies of the 
1,728-atom silicon supercell solved in 
~30 min using 25,920 V100 GPUs

(94% of Summit)

1 Summit node = 2 IBM POWER9 CPUs + 6 NVIDIA V100 GPUs

Full-frequency G0W0 calculation of 1000 or 1728 Si atoms
Ground state DFT with Quantum ESPRESSO
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Large-scale full-frequency G0W0 calculations

PBE

G0W0@PBE

PBE

G0W0@PBE

PBE

G0W0@PBE

Local density of states computed for 
prototypical systems representing our
target applications:

§ Large nanoparticles and interfaces
à materials for energy conversion

§ Defects in semiconductors
à quantum information science (quantum 
computation, communication, and sensing)

system Natom Nelectron Nspin NPW

CdS/PbS 301 2,816 1 948,557

Si/Si3N4 2,376 10,368 1 638,633

VV0 1,598 6,392 2 314,653

CdS/PbS nanoparticle Si/Si3N4 interface
neutral hh divacancy

in 4H-SiC
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Summary

The GW code in WEST has been ported to NVIDIA GPUs, 
with excellent performance & scalability achieved on 
various supercomputers including Perlmutter

Large-scale full-frequency G0W0 calculations demonstrated 
on OLCF/Summit
§ 25k+ NVIDIA V100 GPUs
§ 10k+ valence electrons

Next steps

§ Demonstrate scalability to GPUs for quantum defect 
embedding theory (QDET) calculations (newly ported)

§ Expand the GPU porting to cover BSE and electron-
phonon without empty states

§ Achieve performance portability targeting exascale

systems (ALCF/Aurora, OLCF/Frontier)
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http://west-code.org
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NERSC NESAP Tier-1
§ Dr. Brandon Cook (LBNL)
§ Dr. Soham Ghosh (LBNL)
§ NERSC/Cori-GPU
§ NERSC/Perlmutter

Computational resources 
§ OLCF/Summit (ALCC and INCITE)
§ ALCF/Theta-GPU (discretionary allocation)

ANL GPU Hackathon (April 2021)
§ Dr. William Huhn (ANL; now Intel)
§ Dr. Kristopher Keipert (NVIDIA)
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